National Burn Repository
2017 Report
Dataset Version 13.0

FIRE/FLAME INJURIES REPRESENT 41% OF THE CASES IN THIS REPORT WITH A KNOWN ETIOLOGY

SCALD INJURIES REPRESENT 35% OF THE CASES IN THIS REPORT WITH A KNOWN ETIOLOGY

CONTACT WITH HOT OBJECT INJURIES REPRESENT 10% OF THE CASES IN THIS REPORT WITH A KNOWN ETIOLOGY

ELECTRICAL INJURIES REPRESENT 3% OF THE CASES IN THIS REPORT WITH A KNOWN ETIOLOGY

CHEMICAL INJURIES REPRESENT 3% OF THE CASES IN THIS REPORT WITH A KNOWN ETIOLOGY
American Burn Association NBR Advisory Committee

Michael J. Mosier, MD, FACS, FCCM
NBR Committee Chair
Legacy Emmanuel
Oregon Burn Center
Portland, Oregon

Nicole Bernal, MD
University of California Irvine
UCI Regional Burn Center
Orange, California

Iris H. Faraklas, R.N, BSN
Promise Hospital
Salt Lake City, Utah

Steven A. Kahn, MD
Arnold Luterman Regional Burn Center
University of South Alabama Medical Center
Mobile, Alabama

Yvonne L. Karanas, MD
Santa Clara Valley Medical Center
San Jose, California

Jong O. Lee, MD, FACS
University of Texas Medical Branch
Galveston, Texas

Lauren S. Nosanov, MD
Medstar Washington Hospital Center
Washington, DC

Cynthia L. Reigart, R.N, BSN, MSN
The Nathan Speare Regional Burn Treatment Center
Crozer Chester Medical Center
Upland, Pennsylvania

Colleen M. Ryan, MD, FACS
Massachusetts General Hospital
Boston, Massachusetts

Joan M. Weber, R.N, MSN, CIC
Shriners Hospital for Children
Boston, Massachusetts

Palmer Q. Bessey, MD, FACS, MS, Ex Officio
Weill Cornell Medical College
New York Presbyterian Hospital
William Randolph Hearst Burn Center
New York, New York

Mary L. Patton, MD, FACS, Ex Officio
The Nathan Speare Regional Burn Treatment Center
Crozer Chester Medical Center
Upland, Pennsylvania

American Burn Association Staff

Kimberly A. Hoarle, MBA, CAE
Executive Director

Maureen T. Kiley, BS
Senior Director

Bart D. Phillips, MS, Technology Advisor
BData, LLC
Minneapolis, MN
Acknowledgements

On behalf of the American Burn Association, and the National Burn Repository Committee, we would like to acknowledge the dedication of the burn center registrars that commit to providing accurate data to the NBR. Without their work, there would be no report to provide to the membership and efforts at quality improvement would be greatly limited. We would also like to recognize the work performed by the nurses, therapists, dieticians, social workers, chaplains, surgical teams, volunteers, and medical providers whose commitment to excellent care provides meaning for each of these records. More than data points, they are human lives touched and affected through our efforts. The hours dedicated to the recovery of these patients by each team member are impossible to quantify in this report.

The American Burn Association would also like to thank the members of the National Burn Repository Committee for their commitment, dedication, and expedited review of this year’s report. Their thoughtful analysis of the data guides the membership in their reading of the report and influences future interests and investigations.

The ABA is also grateful for the work of Bart Phillips, Technology Advisor of BData, and his dedicated staff. Their compilation, organization and presentation of this data facilitate its utility into understanding the demographics of burn injury.

Last but not least, the NBR Advisory Committee would like to express their gratitude to the ABA Central Office who provides support and infrastructure to ensure that this resource is completed in a timely fashion. We are also thankful for the tremendous work of Maureen Kiley, ABA Senior Program Director, and Kim Hoarle, Executive Director, who have provided good communication amongst all shareholders of this report and have advocated for continued growth and improvement in the NBR.
Table of Contents

American Burn Association National Burn Repository Advisory Committee...ii
Acknowledgements...iii
Table of Contents..iv
Introduction ..ix
Summary of Findings ...x

1) Analysis of Contributing Hospitals..1
 Figure 1: States that have Submitted to the NBR, 2008 to 2017...2
 Table 1: Burn Center Location and Participation by Region..2
 Figure 2: Contributing U.S. Hospitals by Geographic Region...3
 Figure 3: Arrival/Admission Year, Acute Burn Admissions...3
 Figure 4: Volume of Record Submission by Geographic Region...4
 Figure 5: Contributing U.S. Hospitals by Hospital Ownership Type...4

2) Analysis of All U.S. Records Included in the Report...7
 Figure 6: Age Group by Gender..8
 Table 2: Age Group by Gender..8
 Figure 7: Race/Ethnicity..9
 Table 3: Race/Ethnicity..9
 Figure 8: Age Group by White vs. Non-White ..9
 Figure 9: Burn Size Group (% TBSA) ..10
 Table 4: Survived/Died by Burn Group Size (%TBSA)..10
 Table 5: Etiology..11
 Figure 10: Etiology...11
 Table 6: Place of Occurrence – E849 Code...12
 Table 7: Circumstance of Injury ...12
 Figure 11: Frequency of Contact with Hot Object, Electrical, Fire, and Fire by Age Group..........12
 Figure 12: Place of Occurrence – E849 Code..12
 Table 8: Hospital Disposition...13
 Table 9: Mortality Rate by Age Group and Burn Size ...14
 Figure 13: Circumstance of Injury..14
 Figure 14: Hospital Disposition..13
 Figure 15: Average Hospital Length of Stay by Gender, 2008 to 2017..14
 Figure 16: Mortality Rate by Gender, 2008 to 2017 ...14
 Table 10: Mortality Rate for BAUX Score Categories by Gender...15
 Table 11: Number of Cases in BAUX Score Categories by Gender..18
 Table 12: Number of Cases in BAUX Score Categories by Inhalation Injury...............................19
 Table 13: Mortality Rates for Matrix of Main Predictors...19
 Table 14: Primary Insurance Payor..20
 Figure 17: Complications: Frequency of Top Ten Clinically Relevant Complications..................16
 Figure 18: Complications: Frequency of Top Ten Clinically Relevant Complications by Days on the Ventilator ..16
 Figure 19: Complication Rate for Age Categories by Days on Ventilator17
 Figure 20: Mortality Rate for BAUX Score Categories by Gender ..18
 Figure 21: Mortality Rate for BAUX Score Categories by Inhalation Injury19
 Table 15: Case Count for Select Insurance Categories Over Time ...22
 Table 16: Hospital Days: Lived/Died by Burn Size Group ...23
 Table 17: Hospital Charges: Lived/Died by Burn Size Group ...23
 Table 18: Hospital Charges: Lived/Died by Top 20 MS-DRGs ..24
 Table 19: Days per %TBSA and Charges per Day by Age Groups and Survival..........................25

3) Analysis by Age Group ...26
 Age Group Birth to .9 ...28
 Figure 23: Race/Ethnicity..28
 Table 20: Race/Ethnicity..28
 Figure 24: Etiology...28
 Table 21: Etiology...28
 Table 22: Hospital Days: Lived/Died by Inhalation Injury ...28
 Table 23: Top Ten Complications

Table of Contents

Table 24: Top Ten Procedures
Table 25: Lived/Died by Burn Group Size (% TBSA)
Table 26: Hospital Days by Burn Group Size (% TBSA)
Table 27: Mean Charges for Top Five MS-DRGs

Figure 25: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 26: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 1-1.9 ... 32
Figure 27: Race/Ethnicity
Table 28: Race/Ethnicity
Figure 28: Etiology
Table 29: Etiology
Table 30: Hospital Days: Lived/Died by Inhalation Injury
Table 31: Top Ten Complications
Table 32: Top Ten Procedures
Table 33: Lived/Died by Burn Group Size (% TBSA)
Table 34: Hospital Days by Burn Group Size (% TBSA)
Table 35: Mean Charges for Top Five MS-DRGs

Figure 29: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 30: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 2-4.9 .. 36
Figure 31: Race/Ethnicity
Table 36: Race/Ethnicity
Figure 32: Etiology
Table 37: Etiology
Table 38: Hospital Days: Lived/Died by Inhalation Injury
Table 39: Top Ten Complications
Table 40: Top Ten Procedures
Table 41: Lived/Died by Burn Group Size (% TBSA)
Table 42: Hospital Days by Burn Group Size (% TBSA)
Table 43: Mean Charges for Top Five MS-DRGs

Figure 33: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 34: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 5-15.9 .. 40
Figure 35: Race/Ethnicity
Table 44: Race/Ethnicity
Figure 36: Etiology
Table 45: Etiology
Table 46: Hospital Days: Lived/Died by Inhalation Injury
Table 47: Top Ten Complications
Table 48: Top Ten Procedures
Table 49: Lived/Died by Burn Group Size (% TBSA)
Table 50: Hospital Days by Burn Group Size (% TBSA)
Table 51: Mean Charges for Top Five MS-DRGs

Figure 37: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 38: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 16-19.9 .. 44
Figure 39: Race/Ethnicity
Table 52: Race/Ethnicity
Figure 40: Etiology
Table 53: Etiology
Table 54: Hospital Days: Lived/Died by Inhalation Injury
Table 55: Top Ten Complications
Table 56: Top Ten Procedures
Table 57: Lived/Died by Burn Group Size (% TBSA)
Table 58: Hospital Days by Burn Group Size (% TBSA)
Table 59: Mean Charges for Top Five MS-DRGs

Figure 41: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 42: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 20-29.9 .. 48
Figure 43: Race/Ethnicity

Table 1: Table of Contents

Age Group 30-39.9 ... 52

Age Group 40-49.9 ... 56

Age Group 50-59.9 ... 60

Age Group 60-69.9 ... 64
Table of Contents

Table 99: Mean Charges for Top Five MS-DRGs
Figure 61: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 62: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 70-79.9 .. 68
Figure 63: Race/Ethnicity
Table 100: Race/Ethnicity
Figure 64: Etiology
Table 101: Etiology
Table 102: Hospital Days: Lived/Died by Inhalation Injury
Table 103: Top Ten Complications
Table 104: Top Ten Procedures
Table 105: Lived/Died by Burn Group Size (% TBSA)
Table 106: Hospital Days by Burn Group Size (% TBSA)
Table 107: Mean Charges for Top Five MS-DRGs
Figure 65: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 66: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

Age Group 80 and Over ... 72
Figure 67: Race/Ethnicity
Table 108: Race/Ethnicity
Figure 68: Etiology
Table 109: Etiology
Table 110: Hospital Days: Lived/Died by Inhalation Injury
Table 111: Top Ten Complications
Table 112: Top Ten Procedures
Table 113: Lived/Died by Burn Group Size (% TBSA)
Table 114: Hospital Days by Burn Group Size (% TBSA)
Table 115: Mean Charges for Top Five MS-DRGs
Figure 69: Mean Hospital Days for Fire/Flame, Contact with Hot Object, and Scald by Admission Year
Figure 70: Mean Charges for Etiology Categories with Greater than 100 Valid Charge Cases

4) Analysis by Etiology .. 77
Fire/Flame Injuries ... 78
Figure 71: Circumstance of Injury
Table 116: Circumstance of Injury
Figure 72: Place of Occurrence – E849 Code
Table 117: Place of Occurrence – E849 Code
Figure 73: Percent of Patient with Clinically Relevant Complications by Age Group
Table 118: Complication Rate by Age Group
Table 119: Top Ten Complications
Table 120: Top Ten Procedures
Table 121: Hospital Days: Lived/Died by Inhalation Injury
Table 122: Hospital Days: Lived/Died by Burn Size Group (%TBSA)
Table 123: Mortality Rate for Matrix of Main Predictors
Figure 74: Mortality Rate for BAUX Score Categories by Gender
Table 124: Number of Cases in BAUX Score Categories by Gender

Scald Injuries .. 84
Figure 75: Circumstance of Injury
Table 125: Circumstance of Injury
Figure 76: Place of Occurrence – E849 Code
Table 126: Place of Occurrence – E849 Code
Figure 77: Percent of Patient with Clinically Relevant Complications by Age Group
Table 127: Complication Rate by Age Group
Table 128: Top Ten Complications
Table 129: Top Ten Procedures
Table 130: Hospital Days: Lived/Died by Burn Size Group (%TBSA)
Figure 78: Mortality Rate for BAUX Score Categories by Gender
Table 131: Number of Cases in BAUX Score Categories by Gender

Contact with Hot Object Injuries .. 89
Figure 79: Circumstance of Injury
Table 132: Circumstance of Injury
Table of Contents

Figure 80: Place of Occurrence – E849 Code 93
Table 133: Place of Occurrence – E849 Code
Figure 81: Percent of Patient with Clinically Relevant Complications by Age Group
Table 134: Complication Rate by Age Group
Table 135: Top Ten Complications
Table 136: Top Ten Procedures
Table 137: Hospital Days: Lived/Died by Burn Size Group (%TBSA)

Electrical Injuries .. 93

Figure 82: Circumstance of Injury
Table 138: Circumstance of Injury
Figure 83: Place of Occurrence – E849 Code
Table 139: Place of Occurrence – E849 Code
Figure 84: Percent of Patient with Clinically Relevant Complications by Age Group
Table 140: Complication Rate by Age Group
Table 141: Top Ten Complications
Table 142: Top Ten Procedures
Figure 85: Frequency of Records by Age Categories and Gender

Chemical Injuries .. 97

Figure 86: Circumstance of Injury
Table 143: Circumstance of Injury
Figure 87: Place of Occurrence – E849 Code
Table 144: Place of Occurrence – E849 Code
Figure 88: Percent of Patient with Clinically Relevant Complications by Age Group
Table 145: Complication Rate by Age Group
Table 146: Top Ten Complications
Table 147: Top Ten Procedures
Figure 89: Frequency of Records by Age Categories and Gender

5) Hospital Comparisons... 102

2011-2014 Fire/Flame Injuries ... 103

Figure 90: 2014-2017 Fire/Flame Injuries – Mortality Rate
Figure 91: 2014-2017 Fire/Flame Injuries – Mean Charges
Figure 92: 2014-2017 Fire/Flame Injuries – Mean Length of Stay
Figure 93: 2014-2017 Fire/Flame Injuries – Complication Rate

6) Analysis of International Records .. 109

Figure 94: Age Group by Gender
Table 148: Age Group by Gender
Figure 95: Etiology
Table 149: Etiology
Figure 96: Race/Ethnicity
Table 150: Race/Ethnicity
Figure 97: Place of Occurrence – E849 Code
Table 151: Place of Occurrence – E849 Code
Figure 98: Circumstance of Injury
Table 152: Circumstance of Injury
Table 153: Mortality Rate for BAUX Score Categories by Gender
Table 154: Lived/Died by Burn Group Size (%TBSA)

Appendix .. 115

A. Minimum Data Set and Data Quality ... 116

Table 155: Data Completeness by Variable
Figure 99: Data Quality Expressed as Mean Percent of Missing Variables of the Minimum Data Set per Record by Admission Year
Figure 100: Data Quality Expressed as Mean Percent of Missing Variables of the Minimum Data Set per Record by Facility

B. List of Participating Hospitals ... 120

C. Selected List of Peer-Reviewed Publications Utilizing NBR Data 123
This year’s National Burn Repository (NBR) report represents ten years of cumulative data from 101 United States Burn Centers, four Canadian Burn Centers, and two Swedish Burn Centers. The report contains over 212 thousand entries, with 42,402 new entries submitted by 81 U.S. burn centers for the 2016-2017 call for data, and over 3,700 international entries. This report represents the largest resource on epidemiology of thermal injury for patients admitted to burn centers in North America. It is also the single most useful reference for determining benchmark standards for outcomes such as mortality rate and hospital length of stay.

This year’s report also marks a transition from Version 5 to Version 6 of the burn registry software, which was released to burn centers in 2016/2017, after the release of the National Burn Data Standard (NBDS) in April of 2015. The evolution in data collection brought forward by Version 6 and the NBDS creates a number of reporting and research opportunities as well as the need for key decisions around how to incorporate the Version 6 data with the historical data, previously collected by the American Burn Association. The two biggest changes in the Version 6 software impacting reporting relate to complications and procedures. The number of complication choices dropped from 111 to 33, with a notable drop in reported complications from 10% to 5%, although the change was not uniform at the facility level. For procedures, the difference is that Version 6 allows for ICD-10 coding where Version 5 is strictly ICD-9.

This new data and changes to the Burn Registry Software continue to improve the quality of the NBR data and the ways that it can be used to understand the state of burn care in North America, how care has changed over time, and areas for continued improvement. These changes are good, but there is more to do. While accuracy and participation continue to improve and, resultantly, the NBR continues to improve, the NBR only includes inpatient data, with limited data on isolated inhalation injury, skin diseases, and other conditions commonly treated in burn centers, as well as many records remaining incomplete.

To minimize the number of missing variables; better assess quality, through collection of BQIP quality indicators; and reflect the true scope of burn practice through future inclusion of outpatient data, we will need to have adequately supported burn registries. It is imperative that we support both the manpower to collect this data completely and continue to be thoughtful about the data that is collected if the NBR continues to serve as the single best resource for health care planners within our institutions and our governments. This commitment is labor and cost intensive, but highlights and demonstrates our ability to not only sustain life, but optimize quality of life following burn injury. Thank you to all members of the American Burn Association for your continued support of and belief in the NBR. I hope that you find this report informative and useful.

Michael J. Mosier, MD, FACS, FCCM
Chair, ABA NBR Advisory Committee
The 2017 National Burn Repository Annual Report reviewed the combined data set of acute burn admissions for the time period between 2008 and 2017. Key findings included the following:

1. 101 hospitals from 37 states, and the District of Columbia, contributed to this report, totaling 212,820 records. The majority of patients came from hospitals with 500 or more beds, with the next largest group coming from hospitals with 200-299 beds. Data are not dominated by any single center and appeared to represent a reasonable cross section of U.S. hospitals.

2. In all age categories, except age greater than 80 years old, there are considerably more men than women. There is a bimodal distribution of greatest prevalence in the pediatric age range from 1 to 15 comprising 23.5% of the total burns and the adult age group from ages 20 to 59 years, which makes up 55% of burns. Patients age 60 or older represented 15% of the cases.

3. More than 67% of the reported total burn sizes were less than 10% TBSA and these cases had a mortality rate of 0.6%. The mortality rate for all cases was 3.1% and 5.6% for fire/flame injuries.

4. The two most common etiologies were fire/flame and scalds, accounting for 76% of cases reported. Scald injuries were most prevalent in children under 5, while fire/flame injuries dominated the remaining age categories. 5.4% percent of cases did not designate an etiology of injury.

5. Seventy four percent of the burn injuries with a known place of occurrence were reported to have occurred in the home. Nearly 95% of cases with known circumstances of injury were identified as accidents, with nearly 13% of these reported as work-related. Just over 2% of cases were suspected abuse and 1% was self-inflicted.

6. During the ten-year period from 2008 through 2017, the average length of stay for females declined from 9.4 days to 7.3 days, while that for males declined less significantly from 9.5 to 8.5 days. The mortality rate for females declined from 3.9% to 2.7% and 3.4% to 2.6% for males.

7. Deaths from burn injury increased with advancing age and burn size, as well as presence of inhalation injury.

8. Pneumonia was the most frequent clinically related complication and occurred in 4.7% of fire/flame-injured patients. The frequency of pneumonia and respiratory failure was much greater in patients with 4 days or greater of mechanical ventilation. As expected, with increasing age, the rate of complications increases (with the exception of infants, who have a higher rate than other children).

9. For survivors, the average length of stay was slightly greater than 1 day per %TBSA burned. For those who died, the total hospital days was typically between 2-3 weeks in patients with %TBSA <80%. Eighty seven percent of patients were discharged home and 3% were transferred to rehabilitation facilities.

10. Overall, the charges for patients who died were over 3 times greater than those who survived; however, this was greatly affected by the large number of patients with burns < 10% TBSA. For burns >10% TBSA, total charges for surviving patients averaged $269,523 and charges for non-survivors averaged $361,342.

All cases received from contributing hospitals (both ABA Burn Registry and non-burn registry users) that met the data structure requirements were initially accepted into the NBR. This report includes only cases with an admit year of 2008-2017. Records were excluded from the analysis for this report if the “Admit type” or “Admit status” was:

- Readmission
- Admission for reconstruction/rehabilitation
- Outpatient encounter
- Same patient
- Scheduled/elective admission
- Acute admission, not burn-related
In addition, records were excluded from analysis of this report if they contained missing values for the following:

- Gender
- LOS < ICU days
- Discharge disposition
- Both calculated age and manually entered age
- Both TBSA and etiology

As was done previously, an algorithm was used to identify and remove potential duplicate records from the analysis. Duplicate records can exist in the database if a facility submits the same record during two different calls for data. The algorithm that was implemented identified records that contained identical information on the variables listed below. The more recently submitted record was included in the analysis, while the older record was eliminated as a duplicate.

- Facility
- Admission year
- Age
- Gender
- Race
- Admission type
- Discharge date
- E Code
- %TBSA

Lastly, the records received from our Canadian and International contributors are not included in the body of the analysis, but are presented separately in Section 6.